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Abstract 

Poetry has a prominent history in Arabic literature. The classical Arabic poetry has 16 meters that vary in rhythm and target purpose. 

Chanting a poem eloquently requires knowing the poem’s meter and obtaining a diacritized version of its verses (letters inscribed with 

their short vowels); diacritics are often not inscribed in Arabic texts. This work proposes solutions to classify input Arabic text into the 16 

poetry meters and prose. It also investigates the automatic diacritization of Arabic poetry. We adopt machine learning approach using a 

large dataset of 1,657 k verses of poems and prose to develop neural networks to classify and diacritize Arabic poetry. We propose deep 

and narrow recurrent neural networks with bidirectional long short-term memory cells for solving these problems. The proposed model 

classifies the input text with an average accuracy of 97.27%, which is significantly higher than previous work. We also propose a solution 

that achieves an accuracy that approaches 100% when multiple verses of the same poem are available through predicting the class from 

the aggregate probabilities of the multiple verses. Diacritizing poetry is much harder than diacritizing prose due to the poet’s meticulous 

selection of phrases and relaxation of some diacritization rules. 
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1. Introduction 

Arabic poetry is a thriving, traditional literature that has roots dating to prior the 6th century. Arabs continue to give great 

attention to this art and to celebrate gifted poets. Arabic poets compose poems to express emotions, record events, explain 

ideas, give wisdom, motivate, flirt, praise and defame, and pride and ridicule (Zwettler, 1978). Arabic Prosody, the science 

of poetry, has been developing since the 8th century to study the poetic patterns and meters and to identify sound and broken 

poetry verses. The classical Arabic poetry has 16 main meters that we introduce in the next section. These meters have 

differing popularities and are used in composing poems for the various purposes.  

Hazem al-Carthajini (d. 684 AH) in the 13th century linked the purpose to the meter and proposed that each meter has a 

distinct rhythm that fits some purposes (Al-Carthajini, 1966). As the purposes of poetry are various, including seriousness 

and sobriety, humor and gracefulness, splendor and glorification, and belittling and contempt, the purpose must be matched 

with the appropriate meter. If the poet intends to be proud, this purpose is matched with a luxurious, shining and sober 

meter. If the poet intends to be sarcastic or cynical or to insult, such purpose is matched with what suits it from the reckless 

meters of little splendor. More recently, Al-Tayyib (1989) also linked the poetic purpose with meter. For example, he 

described the C12-Madīd meter by “It has toughness, brutality and violence suitable for war” and the C13-Hazaj meter by 

“It has a sweetness and tone that requires a flowing saying that is dominated by a single thought that the poet sings without 

scrutiny and investigation”. 

Arabic prosody is regarded a difficult science that has many sophisticated rules and techniques. Although gifted poets 

compose poetry naturally, others need to apply these rules and techniques to analyze poetry. The task becomes harder when 

the poem is written without diacritics, which are accents for the Arabic letters and indicate various short vowel sounds. A 

verse written without diacritics has ambiguous pronunciation. However, a proficient reader can often infer the proper 

pronunciation given the poem meter and context. Accurate solutions for analyzing poems, identifying meters, and 
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automatically diacritizing verses are currently unsatisfactory. Such solutions would be very valuable to novice and seasoned 

poets and to whomever interested to facilitate composing, chanting and enjoying fine poetry. 

The main objective of this work is to develop solutions that support analyzing and reading Arabic poetry. In particular, 

this work tackles the problem of how to accurately distinguish poetry from prose and how to accurately find the meter of a 

poem from the sequences of characters that constitute its verses. The previous work provides unsatisfactory accuracy and 

does not distinguish poetry from prose. This work also investigates the accuracy of our previous work in diacritizing poetry. 

Automatic poetry diacritization is the process of predicting the diacritics of a verse from the sequence of verse letters 

without diacritics. This investigation is needed because previous work in using machine learning to automatically diacritize 

Arabic text did not investigate it on Arabic poetry. 

The contemporary success of deep learning approaches has recently included solutions for Arabic language processing 

such as speech recognition and automatic diacritization (Al-Ayyoub et al., 2018). We use in this work deep recurrent neural 

networks (RNN) trained on a large dataset of Arabic poetry and prose. We carefully select the network architecture and tune 

these networks to achieve high classification accuracy. We also investigate improving the accuracy through classifying a 

poem based on the predictions of its comprising verses and predicting the diacritics of undiacritized verses. For diacritizing 

poetry, we use deep RNN in the sequence transcription configuration with undiacritized verses as the input sequence and the 

predicted diacritics as the output sequence. 

This work has three main contributions: (i) We adopt, clean and analyze a large Arabic poetry dataset, and complement it 

with prose samples and clear split to train and test subsets, thus, proposing a benchmark for this research area. (ii) We 

extend the poetry classification problem to distinguish prose from poetry in addition to predicting the entire 16 poetry 

meters. We achieve accuracy significantly better than previous work and we propose a solution that provides 100% 

accuracy in some cases. (iii) To the best of our knowledge, this is the first work that uses deep learning to diacritize Arabic 

poetry. We found that the poetry diacritization accuracy is lower than that of the prose, suggesting the need for further 

research. 

This paper has nine sections. Section 2 gives essential background on Arabic poetry, Section 3 surveys related work, 

Section 4 describes the neural networks used in this work, Section 5 describes and analyzes the dataset used, Section 6, 

describes the experimental part of this work, Section 7 presents the detailed results, Section 8 discusses the main results and 

compares with related work, and Section 9 provides the conclusions and outlines future work. 

2. Arabic poetry 

With the rich vocabulary of the Arabic language, the famous poets of the pre-Islamic era were eager to compete and to 

earn the fame of having their poems hanged on the walls of the Holly Mosque (al-Ka‘bah) and be one of the pendants (al-

Mu‘alaqāt) poets (Margoliouth, 1925). People at that time and in the first centuries of the post-Islamic era, were able 

intuitively to recognize the quality of the poem, its rhythm as accepted poem or not, as well as its deep meaning. Later, a 

large number of people whose mother tongue is not Arabic started to learn Arabic and speak it, but with lower language 

mastery. This caused the language spoken by the common person to deteriorate in quality. One of the great linguists, al-

Khalīl bin Aḥmad al-Farāhīdī (AD 718–786) passed one day by the market where copper pots were shaped by knocking. 

The collective sound of knocking attracted his attention to the similarity with the poetry rhythm. After deep thinking, he 

found that the Arabic poetry has rhythmic patterns and can be classified into 15 classes. Later on, one of his students, al-

Akhfash discovered and added the 16th class. Each class has a certain meter (baḥr). 

The passage of poetry called qaṣīdah consists of a number of verses of the same pattern in most cases. Each verse 

consists of two couplets (shaṭir) of approximately same lengths. The first couplet is called ṣadir and the second is ‘ajuz. The 

end of ‘ajuz usually has the same rhyme (qāfīyah), mostly same letter or sometimes letters, in the entire qaṣīdah (Atiq, 

1987). 

Arabic letters usually have diacritics. The diacritics are often not written but pronounced. The diacritics are called 

harakāt, whose absence is called sukun, which is marked in some cases by the diacritic (  ْ ). Harakah may be either fatha (  ْ ), 

that is equivalent to short “a”, damma (  ْ ) that is equivalent to short “o” or “u”, or kasra (  ْ ) that is equivalent to short “i” or 

“e”. There are other diacritics, namely the shadda (  ْ ) that indicates double letters and the tanwīn variants are signs for 

adding the sound “n” at the end of a word, whether it is fathatan (  ْ ), dammatan (  ْ ), or kasratan (  ْ ) (Alen et al., 2012). 

Word forms in Arabic morphology are usually based on the use of the verb pattern fa’ala ( ل  ع  ف   ). The three letters of this 

pattern are combined with extra letters and diacritics to change its tense or form or even to convert it to a noun form. In 

metering poetry verses, al-Farāhīdī used a similar approach. The rhythm in Arabic poetry comes from the succession of 

letters with and without harakāt. Al-Farāhīdī called the basic repeated sequences in a meter taf‘īlāt (feet). Table 1 lists the 16 

meters (in Roman letters and Arabic) and their couplet patterns as sequences of two to four feet. The two couplets usually 

have the same pattern. The table also lists the meter circle, which is a group of similar meters. However, the meters in this 
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table are ordered according to their frequency, not circle (see Section 5). Each meter comes complete (tām) with all its feet 

in some poems or shortened (majzw’) without some feet in other poems (Atiq, 1987). The table gives our estimations of the 

verse lengths (two couplets) in number of letters for the complete and the shortest variants. We use this estimation in the 

dataset preparation (see Section 5). 

Table 1. The 16 classic Arabic poetry meters 

No. Meter Baḥr Circle Couplet pattern Complete 

length 

Shortest variant 

(majzw’) length 

1 Ṭawīl يل ف اع   1 ط و  يل ن  ف ع ول ن  م  ف اع  يل ن  ف ع ول ن  م   48 44 

2 Kāmil ل ل ن   2 ك ام  ت ف اع  ل ن  م  ت فاع  ل ن  م  ت ف اع   28 42 م 

3 Basīṭ يط ل ن   1 ب س  ت ف ع  س  ل ن  م  ل ن  ف اع  ت ف ع  س  ل ن   م  ف اع   48 34 

4 Khafīf ف يف ت ن   4 خ  لَ  ل ن  ف اع  ت ف ع  س  ت ن  م  لَ   28 42 ف اع 

5 Wāfir اف ر ل ت ن  ف عول ن   2 و  فاع  ل ت ن  م  ف اع   38 38 م 

6 Rajaz ج ز ت ف ع   3 ر  س  ل ن  م  ت ف ع  س  ل ن  م  ت ف ع  س  ل ن  م   42 14 

7 Ramal ل م  ت ن   3 ر  لَ  ت ن  ف اع  لَ  ت ن  ف اع  لَ   28 42 ف اع 

8 Mutaqārib ب ت ق ار   26 40 ف ع ول ن  ف ع ول ن  ف ع ول ن  ف ع ول ن   5 م 

9 Sarīʿ يع ل ن   4 س ر  ل ن  ف اع  ت ف ع  س  ل ن  م  ت ف ع  س   36 38 م 

10 Munsariḥ ح ن س ر  ل ن  4 م  ت ف ع  س  ت  م  ف ع ولَ  ل  م  ت ف ع  س  نم   42 28 

11 Mujtathth   ت ث ج  ت ن   4 م  لَ  ل ن  ف اع  ت ف ع  س   28 28 م 

12 Madīd يد د  ت ن   1 م  لَ  ل ن  ف اع  ت ن  ف اع  لَ   32 38 ف اع 

13 Hazaj ج يل ن   3 ه ز  ف اع  يل ن  م  ف اع   28 28 م 

14 Mutadārik ك ت د ار  ل ن   5 م  ل ن  ف ع  ل ن  ف ع  ل ن  ف ع   30 40 ف ع 

15 Muqtaḍab   ق ت ض ب ت   4 م  ف ع ولَ  ل نم  ت ف ع  س  م   28 26 

16 Muḍāriʿ ع ار  يل ن   4 م ض  ف اع  ت ن  ف اع  م  لَ   28 28 

 

During the seventies of the last century, with the rising use of binary numbers in digital computers, El-Katib (1971) used 

binary numbers to analyze Arabic poetry. The series of letters with sukuns and harakāt is represented as binary digits “1” 

and “0”, respectively. For example the first foot in Ṭawīl meter has the mnemonic taf‘īlah fa‘ūlun (  ف ع ول ن), which has two 

sukun letters and three letters with harakāt. In binary, this foot is coded as 10100, where the least significant digit maps to 

the rightmost letter in   ف ع ول ن. Note that the sukun diacritic on a long vowel such as the waw (و) is usually omitted. 

Arabic poets have some freedom in making changes on the basic pattern of a meter, where the allowed variations do not 

adversely affect the poem rhythm. Some of these variations can be in some poem verses and other variations, when used, 

must be applied to all the poem verses. For example, the listener ear is tolerant to omitting some sukun sounds. Omitting 

one sukun letter from the foot is called holding (qabḍ). In Ṭawīl meter, the fifth sukun in the taf‘īlah mafā‘īlun (  ف اع  يل ن  ,(م 

coded as 1010100, can be held (omitted) to the taf‘īlah variant mafā‘ilun (  ل ن ف اع    .and coded as 100100 ,(م 

Metering verses is usually performed in few steps based on the way verses are pronounced and not how they are written. 

Figure 1 shows an example of metering a verse by Hātim al-Ṭā’ī, proverbial in generosity, addressing his wife Māwīyah. 

The verse is shown in the first row and means: Māwīyah, money comes and goes, and what remains of money is good 

reputation and remembrance. The second row shows the verse broken to two couplets and the third row shows the two 

couplets written as pronounced, which is called ‘arūḍī writing. There are many rules for this writing; we list here some of 

the rules that are used in Row 3 of this example. 

1. The letter with shadda is converted to two characters: the first one is with sukun and the second is with harakah; as 

in the wife name   ي او  ي   that is converted to أ م  او   . ي  أ م 

2. The definite article al (ال) is either converted to (  ل) or removed with doubling the next letter, depending on the 

letter after this article; as in   ال ال  ل   that is converted to الم  م   and   ر ر  ذ  ذ   that is converted to الذ ك  ك  . 

3. Tanwīn diacritic is converted to the related harakah and the letter “n” (  ن); as in   غ اد that is converted to   ن  .غ اد 

4. When the verse (and sometimes the first couplet) ends with harakah diacritic, this harakah is usually pronounced as 

a long vowel, so a vowel letter of same sound is added after this harakah; as in   ر و  ذ ذ   that is converted to الذ ك  ر  ك  . 

Then the series of letters of the ‘arūdī form are transcribed to the corresponding scansion code. Row 4 shows the verse 

scansion using the binary coding described above. Note that there are other used scansion codes. The verse scansion code is 

mapped to the corresponding taf‘īlāt, as shown in Row 5. For example, the scansion 10100 is mapped to (  ف ع ول ن) because it 

stands for three letters with harakāt and two letters with sukun in the same order as in (  ف ع ول ن). Note that Row 6 shows 
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comments of the type of taf‘īlāt identified. Here five taf‘īlāt are intact and one is held. Finally, the identified taf‘īlāt are 

looked up in Table 1 to find the verse meter, which is Ṭawīl in this case (shown in Row 7). 

 

1. Verse َّ َّالمَالََّغَادٍَّوَرَائِح َّأمََاوِي  ذكّْرَُّيْثَُّوَالوَيبَْقَىَّمِنََّالمَالَِّالأحَادَِّ*َََََّّّّّإِن 

2. Couplets َّّكْرَُّوَيبَْقَىَّمِنََّالمَالَِّالأحَادِيْثَُّوَالذ  
 

َّ َّالمَالََّغَادٍَّوَرَائِح  َّإِن   أمََاوِي 

3. ‘arūdī form   و ر  ك  ذ ذ  يـ   ـث  و  اد  ال  لـ   أ ح  ن  ل م  ي ب ق ى م  ن    و  ائ ح  ر  ن   و  ا ل  غ اد  ي   ي  إ ن ن  ل م  او   أ م 

4. Scansionَّ 1010100 10100 1010100 10100  100100 10100 1010100 10100 

5. Taf‘īlāt   ل ن ي  ف اع  ل ن   م  ل ن   ف ع و  ي  ف اع  ل ن   م  ل ن    ف ع و  ف اع  ل ن   م  ل ن   ف ع و  ي  ف اع  ل ن   م   ف ع و 

6. Taf‘īlāt  

type 

ة  س ال م 

Intact 

ة  س ال م 

Intact 

ة  س ال م 

Intact 

ة  س ال م 

Intact 
 
ة ق ب وض   م 

Held 

ة  س ال م 

Intact 

ة  س ال م 

Intact 

ة  س ال م 

Intact 

7. Meter Ṭawīl 

Figure 1. An example for metering a verse from a poem composed by Hātim al-Ṭā’ī 

We should mention here that there are other Arabic poetry types. In the 20th century, a new kind of poetry appeared and 

is called the free poetry. This kind of poetry differs from the classical Arabic poetry described above, which is often referred 

to as the vertical poetry. The free poetry has the rhythm of poetry, but does not follow the structure of couplets or fixed 

number of feet and does not have consistent rhyme (qāfīyah). The free poem has borrowed its shape from other languages 

and sometimes can hardly be distinguished from prose (Badawi, 1975). 

3. Literature review 

Many research efforts have been carried out in the field of processing Arabic language. In the following paragraphs, we 

review related work in classifying Arabic poetry and diacritizing Arabic text. 

3.1. Arabic poetry meter classification 

Several approaches have been used to recognize the meter of an Arabic poem. These approaches can be roughly divided 

into rule-based and machine-learning approaches. 

Ismail et al. (2010) developed a rule-based prototype called expert system harmony test (ESHT) for testing the harmony 

and identifying the meters of Arabic poetry. The authors used expert knowledge to design this rule-based system and tested 

it on only 20 poems. Alnagdawi et al. (2013) develop a three-phase program for finding the poem meter. First, regular 

expressions and context-free grammar are applied to convert the poem into its ‘arūdī form. Second, segmentation is used to 

divide the ‘arūdī form into short and long sounds. Third, the generated sound string is compared against the patterns of the 

poetry meters to determine the best match. The system was tested on 128 verses from different Arabic poems and with 

modest classification accuracy of 75%. Abuata and Al-Omari (2018) followed a similar procedure to classify poetry but 

they only considered the ṣadir couplet of the verse. The algorithm was tested on 417 verses from different Arabic poems and 

achieved 82.2% accuracy. 

 In all these works, the authors relied on rule based techniques. Such techniques require deep understanding of the poetry 

meters and ‘arūd science to develop a comprehensive set of rules to do the classification accurately. The performance of 

such technique relies heavily on the accuracy of the developed and selected rules. Based on the reported accuracies, the 

effectiveness of the rule-based approaches in this domain is unsatisfactory. 

Yousef et al. (2019) developed machine learning models using deep recurrent neural networks (RNN) to classify Arabic 

and English poetry verses. The RNN proved to be powerful in extracting features for each class taking into consideration the 

variations between the samples that belong to the same class. Hence, there is no need to manually handcraft feature 

extraction. This approach was tested on huge datasets crawled from specialized web sites. For Arabic poetry, the approach 

achieved 96.38% classification accuracy on a trimmed dataset of 11 classes and 94.11% on the entire 16 classes.  

Al-Talabani (2020) developed a voice-based model instead of a text-based model to solve the classification task. The 

author generated from the input voice a time series consisting of the linear prediction cepstrum coefficient (LPCC) and Mel 
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frequency cepstral coefficient (MFCC). Then the time series is fed to a long short-term memory (LSTM) classifier to 

determine the poem meter. Also, they converted the time series features vector into a non-time series vector by calculating 

the mean and the standard deviation of the features in each frame. Then the generated vector is fed into an SVM classifier. 

The dataset used in the evaluation (230 verses) is relatively small and includes only three meters out of the sixteen. For the 

speaker independent case, the best classification accuracy of 88.89% is achieved using the LSTM classifier fed with MFCC 

features only. 

Al-shaibani et al. (2020) used text-based deep RNN to classify Arabic poetry. They propose using five wide bidirectional 

recurrent layers and the GRU memory cell in lieu of the LSTM cell. They tested their network using a dataset collected for 

this purpose consisting of 55,440 verses and including samples for 14 out of the 16 Arabic poetry meters. Although they 

used a dataset smaller than the one used by Yousef et al. (2019), they report a slightly better accuracy of 94.32%. 

In this work, we extend these machine learning approaches to reach higher classification accuracy by proposing efficient 

deep RNN architecture and exploiting classification over multiple poem verses. We also investigate the diacritics presence 

on the classification accuracy and we use a machine learning approach to automatically add diacritics to Arabic poetry to 

facilitate poetry pronunciation and classification. 

3.2. Diacritization 

Diacritizing Arabic text is important for the proper reading and pronunciation of printed or written text. This importance 

is even higher for poetry as the poetry language is more refined and innovative. Previous work used rule-base, statistical and 

hybrid approaches (Azmi and Almajed, 2015). We present here the state of the art approaches that have been proposed to 

automatically add diacritics to Arabic word sequences.  

Elshafei et al. (2006) and Hifny (2012) used statistical models followed by search algorithms to find the best probable 

sequence of diacritized words for a given undiacritized word sequence. The former researchers used the hidden Markov 

statistical models (HMM) for modeling and the Viterbi algorithm to find the best probable result. On the other hand, Hifny, 

used statistical n-gram language modeling approach to assign scores for the possible diacritized sequence and dynamic 

programming to search for the best probable result. These proposed approaches achieve 4.1% and 3.4% diacritization error 

rates, respectively. Azim et al. (2012) used speech based diacritizer to complement the text based diacritizer. The text based 

modeling is done using conditional random fields and the speech based models are done using HMM. This hybrid approach 

reduced the diacritization error rate to 1.5%.  

With the rise of deep machine learning approaches, the most recent works are based on deep recurrent neural network 

(RNN) models to solve the diacritization problem as a sequence transcription problem (Abandah et al., 2015; Rashwan et 

al., 2015; Mubarak et al., 2019; Abandah and Abdel-Karim, 2020). Abandah et al (2015) used a bidirectional LSTM 

network to diacritize sequences without the need to perform syntactical or morphological preprocessing steps. Mubarak et 

al. (2019) used the encoder decoder RNN models with attention mechanism to improve the accuracy. The most recent work 

proposed by Abandah and Abdel-Karim (2020) performed intensive evaluation for different encoding strategies and tuned 

the hyper-parameters and configuration of the bidirectional LSTM RNN and evaluated the proposed systems in terms of 

speed and performance. The recommended system achieved significant improvement over the best published results. 

For general sequence transcription, RNN were often used in encode-decoder configuration (Cho et al., 2014). These 

networks have problems with long sequences. The state of the art approaches use attention mechanisms and transformers to 

overcome these problems (Vaswani et al., 2017; Devlin et al., 2018). However, these techniques are not needed here 

because we have one-to-one relationship between the input and output sequences. Currently, the bidirectional RNN 

networks perform best in diacritizing Arabic text. 

4. Sequence classification and transcription 

Sequence classification is the process of finding the class (type) of a sequence be it a time series or a sequence of characters 

or words. Sequence transcription is the process of translating an input sequence to the corresponding target sequence of a 

different type. These processes include finding the sentiment of a paragraph, finding the meter of a poetry verse, language 

translation, voice recognition, and diacritizing Arabic texts. 

4.1. Recurrent neural networks 

Recurrent neural networks (RNN) are often successfully used to solve sequence related problems (Rumelhart et al., 

1986; Sutskever et al., 2014). RNN advantage comes from their internal state (memory cells) that is kept during processing 

the sequence one step at a time and using this state in the next step. Given a sequence of inputs (𝒙1, 𝒙2, … , 𝒙𝑇), an RNN 



6  

computes a sequence of outputs (𝒚1, 𝒚2, … , 𝒚𝑇) based on the computation of a sequence of hidden vectors 𝒉𝑡 by iterating 

the following equations from step 𝑡 = 1 to 𝑇. 

𝒉𝑡 = 𝑓ℎ(𝒉𝑡−1, 𝒙𝑡)   (1) 

𝒚𝑡 = 𝑓𝑦(𝒉𝑡)   (2) 

In classification, the final output 𝒚𝑇 is used to find the class of the input sequence (many-to-one) whereas the entire 

output sequence (𝒚1, 𝒚2, … , 𝒚𝑇)  is used in sequence transcription (many-to-many). The basic RNN described here are 

inefficient in handling sequences with long dependencies. The memory cells tend to forget the first inputs of the sequence. 

4.2. Long short-term memory cells 

Hochreiter and Schmidhuber (1997) proposed the long short-term memory cell (LSTM) for its advantage in faster 

convergence and detecting and remembering long-term dependencies. In addition to the short-term state 𝒉𝑡, the LSTM cell 

has a long-term state 𝒄𝑡 . Both states are functions of the current input and the previous states as summarized in the 

following functions. The cell output is simply the short-term state. 

𝒉𝑡 = 𝑓ℎ(𝒉𝑡−1, 𝒄𝑡−1, 𝒙𝑡)   (3) 

𝒄𝑡 = 𝑓𝑐(𝒉𝑡−1, 𝒄𝑡−1, 𝒙𝑡)   (4) 

𝒚𝑡 = 𝒉𝑡    (5) 

When transcribing a sequence, the RNN output at Step 𝑡 depends on the “seen” input subsequence (𝒙1, 𝒙2, … , 𝒙𝑡). For 

problems such as text diacritization where the output depends on the entire input including the “unseen” subsequence 

(𝒙𝑡+1, 𝒙𝑡+2, … , 𝒙𝑇), the conventional unidirectional RNN fail to give satisfactory output. 

4.3. Bidirectional RNNs 

Schuster and Paliwal (1997) proposed bidirectional RNNs to solve problems that require exploiting the future context in 

addition to the past context. A bidirectional RNN layer has two adjacent unidirectional networks in each layer. The forward 

network is trained by presenting the input sequence in the forward direction (𝒙1, 𝒙2, … , 𝒙𝑇) and the backward network is 

trained by presenting it in the backward direction (𝒙𝑇 , 𝒙𝑇−1, … , 𝒙1). The output is a function of both layers and exploits past 

and future contexts. The output of a bidirectional layer is often a concatenation of the outputs of its forward and backward 

networks. 

4.4. Deep RNNs 

For complex problems such as language translation or diacritizing text, multiple RNN layers are needed to achieve 

efficient solution. Multiple RNN layers are stacked on top of each other forming a deep network where the output sequence 

of one layer is the input sequence for the next higher layer (Graves et al., 2013). The input sequence is presented to the 

lowest RNN layer and the final output is derived from the highest RNN layer often through one or more dense layers. With 

𝑁 layers in the stack, the hidden vectors 𝐡𝑛 are computed by iterating from layer 𝑛 = 1 to 𝑁 and from step 𝑡 = 1 to 𝑇, as 

shown in Equation 6, where 𝐡0 = 𝐱. The network final output 𝒚𝑡 is computed according to Equation 7. 

𝒉𝑡
𝑛 = 𝑓ℎ

𝑛(𝒉𝑡−1
𝑛 , 𝒉𝑡

𝑛−1)   (6) 

𝒚𝑡 = 𝑓𝑦(𝒉𝑡
𝑁)   (7) 

Deep RNN’s efficiency comes from breaking the problem into stages where lower layers extract basic features that are 

used by higher layers to extract more sophisticated features that are used, in turn, to predict the final output. Also using 

bidirectional layers provides better context for detecting features. In this work we use deep bidirectional RNNs with LSTM 

cells (BiLSTM). 
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5. Dataset 

Yousef et al. (2018) collected the Arabic Poem Comprehensive Dataset (APCD). They collected this dataset from two 

specialized web sites: The Collection (2020) and The Poetry Encyclopedia (2020), which aim to collect, preserve, and 

publish Arabic poetry comprehensively and hold millions of Arabic poetry verses. We downloaded the APCD dataset that 

has 1,831,770 poem verse records: 1,691,671 records of the 16 classical meters and the remaining 140,099 records either are 

of seven other non-classical meters or unlabeled. Each record has eight fields: era, poet, collection, rhyme, meter, left 

couplet, right couplet, and the entire verse of both couplets, as shown in Figure 2. 

 

 

Figure 2. Example three records of the Sarīʿ meter from the APCD dataset 

5.1. Dataset preparation 

We noticed that there are some errors in collecting this dataset. To reduce the effect of these errors, we excluded records 

that have any of the following three problems: 

1. Missing left or right halves 

2. Too long verse: Length in number of letters is larger than 120% of the complete meter length (see Table 1) 

3. Too short verse: The length is smaller than 80% of the shortest meter variant length (see Table 1) 

The last two criteria exclude records with verse lengths inconsistent with the meter label. Using these three criteria, we 

excluded 63,303 records. We call this version APCD2 that has 1,628,368 records and is summarized in Table 2. This table 

shows the number of sample verses per meter in descending order and our split to test and train sets. The following 

subsection elaborates on this split. Note that this dataset is skewed; some meters have much more verses than others. 

Table 2. APCD2 dataset number of verses per meter and the test/train split 

No. Meter Kept verses Test set Test ratio Train set Train ratio 

1 Ṭawīl 395,638 38,249 9.7% 357,389 90.3% 

2 Kāmil 358,462 35,048 9.8% 323,414 90.2% 

3 Basīṭ 235,606 23,939 10.2% 211,667 89.8% 

4 Khafīf 151,784 13,691 9.0% 138,093 91.0% 

5 Wāfir 130,918 12,866 9.8% 118,052 90.2% 

6 Rajaz 103,059 12,196 11.8% 90,863 88.2% 

7 Ramal 71,527 7,017 9.8% 64,510 90.2% 

8 Mutaqārib 62,350 6,322 10.1% 56,028 89.9% 

9 Sarīʿ 56,249 5,344 9.5% 50,905 90.5% 

10 Munsariḥ 27,708 2,815 10.2% 24,893 89.8% 

11 Mujtathth 15,718 1,728 11.0% 13,990 89.0% 

12 Madīd 7,418 687 9.3% 6,731 90.7% 

13 Hazaj 6,916 915 13.2% 6,001 86.8% 

14 Mutadārik 4,204 294 7.0% 3,910 93.0% 

15 Muqtaḍab 702 119 17.0% 583 83.0% 

16 Muḍāriʿ 109 19 17.4% 90 82.6% 

 Total 1,628,368 161,249 9.9% 1,467,119 90.1% 
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5.2. Test/train splitting 

Verses of same poem are listed consecutively in this dataset. Assuming that a poem’s verses are consecutive and a 

change in any of the attributes era, poet, collection, rhyme, or meter implies a new poem, we estimated that APCD2 has 

verses from 115,478 poems. The median poem length is five verses and the range is one to 2,367 verses. We randomly split 

these poems into two sets: 10% test set and 90% train test. Table 2 shows that this split is generally well stratified over the 

16 meters. On the verse level, the table shows that the split is not perfect 10-90 split (especially for meters with low 

numbers of samples) because the number of verses per poem is not constant. We publish this version with this clear 

test/train split hoping that this dataset will become a benchmark in the related research (Abandah, 2020a). 

5.3. Dataset characteristics 

We present here some statistics about APCD2 to illustrate its diversity. Table 3 presents three aspects about this dataset: 

rhyme, era and poet. The rhyme letters and eras are ordered in descending order according to their respective counts. The 

table shows that all 29 Arabic letters are used as rhymes. However, the top six letters (Reh, Lam, Meem, Dal, Beh, and 

Noon) are the most popular rhymes and are used in about 70% of the sample. The dataset classifies the poems into 12 eras. 

About 40% of the sample verses are of the modern era and the rest are older dating back to pre-Islam in the sixth and early 

seventh centuries. The sample has poems for 3,360 poets; 50% of these poets are from the Modern, pre-Islamic, and Fatimid 

eras.  

Table 3. APCD2 rhyme, era and poet distributions 

Rhyme letter  Verses  Era Verses Poets 

Reh 256,197 ر  Modern 645,621 691 

Lam 190,412 ل  Abbasid 228,288 386 

Meem 184,513 م  Mamluk 150,467 132 

Dal 183,843 د  Ottoman 141,999 174 

Beh 159,828 ب  Fatimid 121,705 477 

Noon 151,043 ن  Al Ayoubi 108,553 101 

Ain 65,935 ع  Morocco and Andalusia 99,064 285 

Qaf 64,092 ق  Umayyad 61,518 236 

Hamza 48,301 ء  Seasoned 29,635 167 

Teh 45,405 ت  Pre-Islam 21,156 523 

Feh 41,921 ف  Between the two countries 18,238 42 

Hah 39,574 ح  Islamic 2,124 146 

Heh 35,257 هـ     

Seen 33,150 س     

Yeh 28,044 ي     

Kaf 25,013 ك     

Jeem 15,209 ج     

Dad 11,994 ض     

Alef 8,088 ا     

Tah 7,614 ط     

Zain 5,162 ز     

Sad 4,721 ص     

Sheen 4,676 ش     

Waw 4,475 و     

Theh 3,945 ت     

Thal 2,691 ذ     

Khah 2,218 خ     

Ghain 2,056 غ     
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Zah 1,546 ظ     

Alef Maksura 1,259 ى     

Total  1,628,182   1,628,368 3,360 

 

Assuming that APCD2 is representative sample of the Arabic poetry, we present the change in meter popularity with 

time using Table 4. The table shows distributions of the 16 meters in the 12 eras ordered from the oldest to the modern era. 

For example, C1-Ṭawīl meter popularity declined with time with a peak of 50.7% in the Early Islamic era and 19.8% in the 

Modern era. On the other hand, the C2-Kāmil meter’s popularity increased over time with only 11.0% in the Early Islamic 

era and 24.2% in the Modern era. 

Table 4. Distribution of the 16 meters in the 12 eras ordered from the oldest to the modern era 
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1. Ṭawīl 37.3% 42.2% 50.7% 47.5% 23.6% 21.2% 32.5% 24.8% 26.3% 24.7% 25.5% 19.8% 

2. Kāmil 15.1% 14.0% 11.0% 13.2% 13.0% 18.5% 25.1% 22.2% 23.7% 21.7% 22.2% 24.2% 

3. Basīṭ 11.8% 12.7% 9.6% 12.8% 11.1% 11.7% 14.5% 13.7% 15.6% 16.8% 16.3% 14.9% 

4. Khafīf 4.4% 3.2% 2.6% 4.5% 7.6% 10.2% 4.3% 7.5% 5.8% 7.3% 10.6% 11.9% 

5. Wāfir 16.4% 13.8% 13.4% 13.0% 7.5% 8.8% 5.8% 8.5% 6.5% 6.8% 6.1% 8.0% 

6. Rajaz 1.5% 1.2% 3.0% 1.1% 19.2% 7.6% 2.1% 6.8% 5.4% 9.9% 5.7% 6.4% 

7. Ramal 3.4% 1.9% 5.6% 1.3% 3.5% 3.4% 3.6% 1.8% 3.7% 2.8% 4.9% 6.2% 

8. Mutaqārib 4.2% 7.4% 2.8% 3.0% 3.4% 5.5% 4.6% 6.3% 3.5% 2.4% 2.0% 3.3% 

9. Sarīʿ 2.7% 1.9% 0.1% 1.0% 4.8% 5.1% 3.8% 4.7% 5.0% 3.9% 3.1% 2.6% 

10. Munsariḥ 1.9% 1.3% 0.8% 1.8% 3.7% 5.0% 1.3% 2.3% 2.2% 1.6% 1.3% 0.5% 

11. Mujtathth 0.0% 0.0% 0.2% 0.0% 0.2% 0.9% 0.8% 0.6% 0.9% 0.9% 1.0% 1.3% 

12. Madīd 0.7% 0.2% 0.2% 0.5% 0.1% 0.6% 0.7% 0.3% 0.6% 0.5% 0.8% 0.3% 

13. Hazaj 0.6% 0.2% 0.0% 0.2% 2.2% 1.3% 0.1% 0.5% 0.5% 0.4% 0.1% 0.2% 

14. Mutadārik 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.6% 0.1% 0.2% 0.3% 0.2% 0.4% 

15. Muqtaḍab 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.2% 0.0% 0.0% 0.0% 0.0% 0.1% 

16. Muḍāriʿ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 

Anees (1952) noted that some poetry meters were popular in some eras and declined in others. He noted that the C2-

Kāmil and C3-Basīṭ meters popularity increased since the Andalusian and Abbasid eras, perhaps due to many reasons and 

factors, including the new environments that the Arabs opened up to in the Levant, Iraq and Andalusia, which are different 

from the environment of the desert in the Arabian Peninsula, as well as the cultural cross-fertilization between the Arab and 

other non-Arab elements, such as the Persians in the Levant, the Goths, the Saqlabis and the Berbers in the West Arab 

region. He also noted that in our modern era, when poets increased, cultures converged, and technologies spread, some 

meters receded, such as the C1-Ṭawīl meter, and others advanced, such as the C7-Ramal, which remained dormant until the 

modern era came and brought about a great renaissance for this meter. 

5.4. Use of diacritics 

The sample has wide range of diacritics usage. Figure 3 shows the cumulative distribution function of the diacritics to 

letters ratio of APCD2 verses. About 18.5% of the sample verses have zero diacritics, the average ratio for the entire sample 

is 0.27 diacritics per letter, and there are some verses with heavy diacritics reaching the ratio 1.2. 
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Figure 3. Cumulative distribution of the verse diacritics to verse letters ratios 

Figure 4 shows three sample verses with zero, average, and large diacritics to letters ratios. Samples without diacritics are 

hard to pronounce and only fluent Arabic speakers can pronounce them correctly. When some crucial diacritics are present, 

pronunciation becomes much easier, and when all diacritics are present, pronunciation becomes straightforward. In Arabic, 

the number of diacritics can exceed the number of letters when the shadda diacritic (  ْ ) is present because its letter can have 

another diacritic. Shadda diacritic, in fact, indicates that the original spelling has double letter collapsed into one. For 

example, the origin of the word sayyidu “master” (  س ي  د) is (  ي د ي   .(س 

 

Diacritics to letters ratio Sample 

 وكيف تكاونوا من غير شيء    وكيف تناولوا الغرض البعيدا 0.0
 وَلَو شِئنا حَمَيناها البَوادي    كَما تَحمي أُسودُ الغابِ غابا 0.27
 مَّهْ ئِ لَِِنَّهُ سَيِ دُ الَِ حُبُّ عَلِيَّ عُلُوُّ هِمَّهْ     1.2

Figure 4. Three sample verses of none, average, and heavy diacritics 

5.5. Prose samples 

In order to build machine-learning models that can distinguish poetry from prose, we added to APCD2 some prose 

samples. We selected these samples to represent the classical and the modern standard Arabic. The classical samples come 

from the Tashkeela dataset (Fadel et al., 2019) and the modern samples come from the LDC ATB3 dataset (Maamouri et 

al., 2004). These two datasets are frequently used as benchmarks in Arabic text diacritization research. We added 28,635 

prose sequences available in the two datasets that have sequence lengths compatible with the poetry verse lengths. The 

selected sequences have lengths between 12 and 57 letters. As these two datasets are diacritized, we removed the diacritics 

from 30% of the selected sequences to reduce the effect of diacritics presence on the model’s ability to distinguish poetry 

from prose. Table 5 shows the numbers of the selected prose sequences for the test and train subsets. 

Table 5. Prose samples in APCD2 (test/train numbers) 

Source Original dataset sequences Selected sequences Total selected 

Tashkeela 2,500/52,500 695/14,748 15,443 

LDC ATB3 3,857/22,170 1,973/11,219 13,192 

Total  2,668/25,967 28,635 

 

Figure 5 summarizes the number of sample verses in APCD2 comprising the 16 poetry classes and the prose; a total of 

1,657,003 poetry and prose verses. Notice that the figure has a log scale and the dataset is highly skewed. The most frequent 
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class is more than three orders of magnitude larger than the least frequent class. This dataset skew reflects the fact that 

Arabic poets prefer some poetry meters over others. 

 

 

Figure 5. Number of verses for each class in APCD2 

6. Experiments 

In this section, we describe our experimental setup and basic machine learning experiments conducted to select and tune 

a suitable classification model and an automatic diacritization model. 

6.1. Experimental setup 

 The specifications of the platform on which our experiments are performed are shown in Table 6. Although the 

computer has a powerful GPU, we conducted most of the experiments on the CPU because the GPU does not give better 

speedup. Only the diacritization experiments get better performance on the GPU. 

Table 6. Specifications of the experimental platform 

Aspect Specification 

CPU Intel Core i7-9700KF @ 3.6 GHz, 8 cores, 12 MB cache 

GPU Nvidia GeForce RTX 2080 @ 2.1 GHz, 2944  CUDA cores, 8 GB memory 

Memory 32 GB DDR4-SDRAM @ 2666MHz 

OS Ubuntu 20.04 LTS, 64-bit 

Libraries Python 3.8.2, TensorFlow 2.2.0, Keras 2.3.0-tf 

 

The dataset and source code used in this work are posted on GitHub (Abandah, 2020a). You can recreate the main results 

of this work from this repository. Moreover, the trained model is available on a web page for interested users to find poetry 

meters (Abandah, 2020b). 

6.2. Classification base model 

We developed our models using Python programming language, Keras high-level API, and TensorFlow deep learning 

library (Google TensorFlow, 2020). Figure 6 shows the network of our baseline model. The input verse is presented one 

character at a time to the embedding layer that translates the input characters to 32-long vectors. The model has two 

BiLSTM layers; each layer has 2×128 cells. The output layer is a fully-connected layer that uses the softmax activation 
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function with one output for each of the 17 classes. This model is compiled to use Adam optimizer in the backpropagation 

through time (BPTT) training scheme and categorical cross entropy as loss function. The model trains using mini batches of 

size = 64 sequences (Géron, 2019). The skeleton code of this model is in Appendix A. 

 

 

Figure 6. The base model with two BiLSTM layers 

We use 85% of the training set for training the model for a maximum of 100 epochs. At the end of each epoch, the model 

predicts the classes of the rest 15%-validation set and the accuracy on predicting this set is used to early stop training when 

this accuracy does not improve for five consecutive epochs. Finally, the weights of the epoch that has best validation 

accuracy are used in the prediction phase. 

6.3. Model tuning 

We performed many experiments to tune the model’s hyper-parameters. Table 7 summarizes these experiments with 

respect to the base model described above that has two BiLSTM layers, 128 cells per layer, 64-batch size, and Adam 

optimizer. The table shows the number of model parameters to reflect the model’s complexity and speed, accuracy in 

predicting the classes of the test subset, and training length in total epochs and training time. As APCD2 is huge and 

requires long training times, we selected only 100,000 verses randomly of the APCD2 training set to perform many tuning 

experiments. The accuracy reported in this table is on 15%-test subset of these selected verses. 

Table 7. Summary of the tuning experiments with respect to the base model using a subset of APCD2 

Model hyper parameters Model parameters Accuracy Training epochs Training time 

BiLSTM layers = 1 171 k 94.0% 42 1.5 hrs. 

BiLSTM layers = 2 (Base model) 565 k 94.8% 30 3.1 hrs. 

BiLSTM layers = 3 959 k 94.5% 23 3.9 hrs. 

Cells/layer = 64 152 k 94.3% 37 1.8 hrs. 

Cells/layer = 128 (Base model) 565 k 94.8% 30 3.1 hrs. 

Cells/layer = 256 2,177 k 94.4% 14 4.7 hrs. 

Batch size = 32 565 k 94.9% 24 3.6 hrs. 

Batch size = 64 (Base model) 565 k 94.8% 30 3.1 hrs. 

Batch size = 128 565 k 94.6% 29 2.3 hrs. 

Optimizer = NAG 565 k 93.4% 59 6.1 hrs. 

Optimizer = Adam (Base model) 565 k 94.8% 30 3.1 hrs. 

Optimizer = RMSProp 565 k 93.8% 20 2.1 hrs. 

 

The table shows sensitivity analysis for using 1, 2 and 3 BiLSTM layers. Although the shallow network has the fewest 

parameters (171 k) and is the fastest (1.5 hrs.), it is less accurate (94.0%). The deeper networks are slower and more 

accurate and the two-layer network has the best accuracy (94.8%). The table also shows that the network complexity in total 
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number of parameters is roughly proportional to the square number of cells per LSTM layer. The network with 256 cells per 

layer is roughly 42 times more complex than the one of 64 cells per layer (2,177 k vs. 152 k). The most complex model is 

the slowest (4.7 hrs.) but is less accurate (94.4%) than the base model of 128 cells per layer. 

Increasing the mini batch size improves the training time as it benefits from the available hardware parallelism and 

slightly affects the model accuracy. The base batch size of 64 is a good balance between speed and accuracy. Finally, the 

table shows the performance of the following three optimizers: 

1. The Nesterov accelerated gradient descent (NAG) optimizer with η=0.01 and momentum β=0.9 (Nesterov, 

1983). 

2. The adaptive moment estimation (Adam) optimizer (Kingma and Ba, 2014) with default learning rate η=0.001 

and default hyperparameters β1=0.9, β2=0.999 and ε=10-7. 

3. RMSprop optimizer with η=0.001 and decay rate β=0.9 (Tieleman and Hinton, 2012). 

The adaptive optimizers Adam and RMSprop converge faster than NAG (59 epochs) and are more accurate. Adam 

optimizer converges slower (30 epochs) than RMSprop (20 epochs) but gives more accurate model. 

6.4. Network architecture effect 

We evaluated the performance of the base model on the entire APCD2 dataset (see the first entry in Table 8). The 

model’s accuracy improves when it trains on a larger training set (97.15% here versus 94.8% in Table 7). Table 8 also 

shows the error rate and macro accuracy. The error rate is (1 - accuracy) and the macro accuracy comes from computing the 

accuracy independently for each class and then taking the average. As we have dataset class skew, the macro accuracy is 

lower than the accuracy over all instances because classes with fewer instances have lower accuracy. We elaborate on this 

issue in Section 7. 

Table 8. Comparison among wide, deep and unidirectional LSTM networks on the entire APCD2 dataset 

Experiment Model parameters Accuracy Error rate Macro Accuracy 

Wide, 2 bidirectional LSTM layers, 128 cells/layer 565 k 97.15% 2.85% 94.81% 

Deep, 4 bidirectional LSTM layers, 64 cells/layer 350 k 97.27% 2.73% 94.88% 

Deep, 4 unidirectional LSTM layers, 110 cells/layer 358 k 97.01% 2.99% 93.97% 

 

As deep networks often have higher parameter efficiency than shallow ones, we tested a network with twice the LSTM 

layers and half the number of cells per layer (Srivastava et al., 2015). The table shows that the deep network has slightly 

better accuracy at 97.27% with fewer parameters (350 k). This deep bidirectional network is shown in Figure 7. Similar to 

the wide network, it has an embedding layer at the input and its output layer is a dense layer with the softmax activation 

function. However, the deep network has four bidirectional LSTM layers instead of two layers.  

 

 

Figure 7. The deep network with four BiLSTM layers 

To demonstrate that the BiLSTM architecture is beneficial for classifying poetry, we tested a unidirectional network. The 

tested unidirectional network also has four LSTM layers, but we increased the number of cells per layer to 110 so that it has 
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model parameters (358 k) similar to the bidirectional network. Table 8 shows that the unidirectional network is less accurate 

(97.01%), implying that the bidirectional architecture is more efficient in extracting features from the input verses that are 

useful to classify poetry. 

The confidence in these accuracy numbers is pretty high because the support test set is very large (163,917 verses). For 

example, with 95% confidence level, the deep model accuracy of 97.27% has a confidence interval (97.19%, 97.35%). 

Moreover, the confidence intervals of the accuracies of the above three models are not overlapping. 

6.5. Training convergence 

We propose adopting the deep bidirectional model because it efficiently achieves the best accuracy. Figure 8 shows the 

training curves of this model. With early stopping and 5-epoch patience, training stopped after 57 epochs. The best accuracy 

on the validation set is 97.93% at Epoch 52. As expected, the accuracy on the training set steadily improves with time; it 

reaches 98.07% at Epoch 57. However, the accuracy on the test set is lower at 97.27%. This difference is mainly due to our 

train/test split on poem basis, not verse basis. 

 

 

Figure 8. Training curves of the proposed deep bidirectional model 

6.6. Automatic diacritization experiments 

We experimented with automatically adding diacritics to Arabic poetry by using the machine learning approach 

suggested by Abandah and Abdel-Karim (2020). To develop a model for diacritizing Arabic poetry verses, we selected all 

the verses in the training set that have diacritics to letters ratio of 0.50 or higher (refer to Figure 3). This selection rule 

provided 368,617 diacritized verses consisting of 3,475 k words and were split into 85% training set and 15% validation set. 

It turned out that poetry is harder to diacritize compared with prose. The diacritization model performance on the 

validation set is 6.08%-diacritization error rate (DER) and 20.40%-word error rate (WER). Table 9 compares this 

performance with the performance of two models trained to diacritize prose samples (Abandah and Abdel-Karim, 2020). 

Tashkeela is a dataset representative of the classical Arabic and LDC ATB3 is a dataset of modern standard Arabic. 

Table 9. The diacritization and word error rates for poetry and prose  

Dataset Size in words DER WER 

Tashkeela 2,312 k 1.97% 5.13% 

LDC ATB3 305 k 2.46% 8.12% 

Arabic Poetry 3,475 k 6.08% 20.40% 
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Although the dataset used in diacritizing poems is larger than the two prose datasets combined, the error rate in 

diacritizing poems is about three times worse than diacritizing prose. There are two main reasons for this difficulty. First, 

the poetry language is usually carefully and innovatively selected resulting in verses that often have uncommon structures 

and terms making them harder to diacritize. Second, the poet has some freedom in diacritizing the ends of some words to 

meet the selected rhyme and pattern of the poem. 

7. Detailed Results 

We present here the performance details of the proposed deep bidirectional model and investigate the diacritics presence 

on the model’s accuracy. 

7.1. Detailed accuracy results 

Table 10 shows the model’s prediction precision, recall and F1 score for the 17 classes. The support column shows the 

number of verses in the test set. These three metrics generally decrease with smaller training samples. The most frequent 

class (C1-Ṭawīl) has the best accuracy with F1 score of 99.0%. C14-Mutadārik class has the worst precision (87.6%) 

because the model wrongly classifies many other classes such as C6-Rajaz and C8-Mutaqārib verses as C14-Mutadārik (see 

the confusion matrix in Figure 9). C12-Madīd has the lowest recall (88.4%) because the model wrongly classifies many of 

its verses as C4-Khafīf and C7-Ramal. For these reasons, the F1 scores of C14-Mutadārik and C12-Madīd are the lowest 

(90.6% and 89.9%), even lower than classes with fewer samples such as C15-Muqtaḍab and C16-Muḍāriʿ. 

Table 10. Precision, recall, and F1 score for each class 

No. Class Precision Recall F1 score Support 

1 Ṭawīl 99.1% 99.0% 99.0%  38,249  

2 Kāmil 96.8% 97.9% 97.4%  35,048  

3 Basīṭ 98.1% 98.7% 98.4%  23,939  

4 Khafīf 97.8% 96.5% 97.1%  13,691  

5 Wāfir 98.6% 98.8% 98.7%  12,866  

6 Rajaz 94.9% 91.6% 93.2%  12,196  

7 Ramal 93.9% 95.9% 94.9%  7,017  

8 Mutaqārib 97.9% 96.9% 97.4%  6,322  

9 Sarīʿ 93.0% 94.1% 93.6%  5,344  

10 Munsariḥ 94.2% 92.1% 93.2%  2,815  

11 Mujtathth 92.0% 95.3% 93.6%  1,728  

12 Madīd 91.4% 88.4% 89.9%  687  

13 Hazaj 97.0% 94.8% 95.9%  915  

14 Mutadārik 87.6% 93.9% 90.6%  294  

15 Muqtaḍab 93.1% 90.8% 91.9%  119  

16 Muḍāriʿ 94.4% 89.5% 91.9%  19  

17 Prose 97.0% 95.8% 96.4%  2,668  

 Average 95.1% 94.7% 94.9%  

 Weighted Average   97.3% Total: 163,917  

 

The model has relatively excellent precision in predicting C17-Prose (97.0%). This precision is higher than classes with 

much more support verses such as C2-Kāmil. Moreover, C17-Prose has relatively high recall (95.8%). These high precision 

and recall indicate that the model successfully classifies and detects prose from poetry. 

To solve the low accuracy of meters of low support, we experimented with modifying the weight loss using techniques 

such as the balanced heuristic, which give more weight to classes of fewer samples (King and Zeng, 2001). This technique 

reduces the accuracy of the best classes and does not improve the macro average nor the weighted average of the F1 scores 

(91.4% and 96.3%, respectively). 
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7.2. Confusion matrix 

Figure 9 shows the confusion matrix for predicting the test set. Each row in this matrix shows the model’s prediction of 

the corresponding class. Taking the first row as an example, the model correctly classifies 99.0% of C1-Ṭawīl test verses 

and incorrectly classifies 0.4% of the C1-Ṭawīl test verses as C2-Kāmil, and so on. As described above, Column 14 of this 

matrix explains the low precision of C14-Mutadārik and Row 12 explains the low recall of C12-Madīd. 

 

 

Figure 9. Confusion matrix of predicting the 17 classes 

Some of the incorrect classifications shown in this matrix are explainable by the characteristics of Arabic poetry. Arabic 

poets often make allowed variations to the basic patterns described in Section 2 (Atiq, 1987). These variations are called 

‘illaah ( ل   ةع  ) and ziḥāf ( حافز   ). The main difference between the two types is ‘illaah must be applied to all poem verses 

whereas ziḥāf can be applied to some of the poem verses. Some of these variations make the verses of one meter 

indistinguishable from some other meter. The meter pairs that are affected by these variations are marked in bold and 

underline in Figure 9. For example, such variations make the pattern of C6-Rajaz similar to the pattern of C2-Kāmil, which 

may explain the 4.1% of C6-Rajaz verses incorrectly classified as C2-Kāmil. The pairs of meters that become 

indistinguishable with such variations are: C2-Kāmil and C6-Rajaz, C2-Kāmil and C9-Sarīʿ, C4-Khafīf and C14-Mutadārik, 

C5-Wāfir and C13-Hazaj, C9-Sarīʿ and C6-Rajaz, and C16-Muḍāriʿ and C11-Mujtathth (El-Katib, 1971). 

7.3. Diacritics effect 

As described in Section 5.4, the sample has wide range of diacritics usage. We investigate here the effect of diacritics 

presence on the classification accuracy. The results presented above are for the deep model trained on verses that include 

available diacritics and tested using verses that also include the available diacritics. The summary of these results are 

repeated in the first row of Table 11 for convenience. The second row illustrates that this model is adversely affected when 

the diacritics are removed from the input test verses. Removing diacritics from the input verses raises the error rate from 

2.73% to 3.49%. This implies that the model partially relies on the presence of diacritics to extract features and accurately 

classify the input verse.  

Table 11. Effect of verse diacritization on performance 

Experiment Model parameters Accuracy Error rate Macro Accuracy 

Diacritized training/diacritized input 350 k 97.27% 2.73% 94.88% 

Diacritized training/undiacritized input 350 k 96.51% 3.49% 90.96% 

Undiacritized training/undiacritized input 350 k 97.00% 3.00% 93.75% 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 Ṭawīl 99 0.4 0.3 0.2 0.1 0 0 0 0 0 0 0 0 0 0 0 0

2 Kāmil 0.2 97.9 0.3 0 0.1 0.7 0.3 0 0.2 0.1 0.2 0 0 0 0 0 0

3 Basīṭ 0.5 0.4 98.7 0 0.1 0.1 0 0 0 0.1 0 0 0 0 0 0 0

4 Khafīf 0.5 0.4 0.1 96.5 0 0.3 0.8 0.4 0.5 0.1 0 0.3 0 0 0 0 0.1

5 Wāfir 0 0.4 0.2 0 98.8 0.2 0.2 0.1 0.1 0 0 0 0 0 0 0 0

6 Rajaz 0.1 4.1 0.9 0.2 0.1 91.6 0.5 0.1 1.4 0.4 0.3 0 0 0.1 0 0 0.2

7 Ramal 0.1 0.5 0.1 1.5 0.4 0.4 95.9 0 0 0.1 0.4 0.1 0.1 0.1 0 0 0.2

8 Mutaqārib 0.8 0 0 0 0.5 0.1 1 96.9 0.3 0.1 0 0 0 0.2 0 0 0

9 Sarīʿ 0.1 2.4 0.3 0.1 0.1 1.9 0.1 0.4 94.1 0.4 0 0 0 0.1 0 0 0

10 Munsariḥ 0 2 2.6 0.6 0.1 1.2 0 0 1.1 92.1 0.2 0 0 0 0 0 0

11 Mujtathth 0 1.7 0 0.1 0 2 0.3 0.2 0 0 95.3 0 0.1 0 0 0.1 0.2

12 Madīd 0 0.3 0.1 4.1 0.4 0 5.5 0.1 0.6 0 0 88.4 0 0.3 0 0 0.1

13 Hazaj 0 0.5 0 0 3.2 1 0.2 0 0 0 0.2 0 94.8 0 0 0 0.1

14 Mutadārik 0 0.7 0.3 2 0.3 0 0.7 1 0.7 0 0 0.3 0 93.9 0 0 0

15 Muqtaḍab 0 0.8 0 0 0 5 1.7 1.7 0 0 0 0 0 0 90.8 0 0

16 Muḍāriʿ 0 0 0 5.3 0 0 0 0 0 0 5.3 0 0 0 0 89.5 0

17 Prose 0.4 0.5 0.1 0.1 0.2 1.4 0.4 0.3 0.1 0.1 0.3 0 0.1 0.1 0 0 95.8
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We also trained the deep model on the train set verses after removing available diacritics. This model can only be tested 

with input verses without diacritics. The performance of this model is shown in the last row of Table 11. Although its error 

rate is higher than the first model with diacritized input (3.00% vs. 2.73%), it is better than the first model when the 

diacritics are not present at the input (3.00% vs. 3.49%). These results demonstrate that diacritics are useful for accurate 

classification. However, the model trained without diacritics is more robust in classifying verses when diacritics are not 

available. 

8. Discussion 

In this section, we investigate improving the classification accuracy using multiple verses from the same poem and 

automatically adding missing diacritics. We also compare the main results with previous work. 

8.1. Classifying multiple verses 

In Section 7, we showed that some errors can be attributed to the freedom that Arabic poets have in making some 

variations to the basic poetry patterns resulting in verses that become identical to the patterns of other meters. This insight 

motivated us to improve the classification accuracy by considering multiple verses of the same poem instead of one verse at 

a time. Remember that the results reported above are based on classifying one verse at a time even for poems that have 

multiple verses. Specifically, the classifier predicts the class �̂� of the highest probability of the estimated probabilities �̂�𝑘 of 

all classes at the model output using the following equation. 

�̂� =  argmax  
𝑘

�̂�𝑘   (8) 

In Section 5.2, we described that the dataset is split on poem bases to train and test sets and has 115,478 poems of 

varying verse lengths. Figure 10 shows the CDF of the test set according to the poem length in verses. 4.5% of these poems 

have one verse only, 90% have 36 verses or shorter, and 98.8% have 100 verses or shorter. 

 

 

Figure 10. CDF of the test poems according to the length of the poem in verses 
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To exploit the above insight, we use the following equations when classifying a poem of multiple verses. We first 

aggregate the estimated probabilities �̂�𝑖,𝑘  over all poem verses 𝑖, then we predict the class �̂� of the highest aggregated 

probability �̂�𝑘. 

�̂�𝑘 = ∑ �̂�𝑖,𝑘          𝑖

�̂� =  argmax  
𝑘

�̂�𝑘
   (9) 

Figure 11 shows the accuracy as function of poem length in verses for the two deep models trained with and without 

diacritics. The accuracy increases rapidly when the poem length increases from one to two and from two to three. The 

accuracy keeps increasing slowly beyond three verses and approaches 100% for very long poems. By considering multiple 

verses from a poem, the average accuracy of the first model rises to 98.2%, 98.5%, 99.1%, and approaches 100% for 2, 3, 

36, and larger than 110 verses, respectively. Although the second model trained without diacritics has lower accuracy for 

one verse (96.44% vs. 97.07%), it is generally more robust and has slightly higher average accuracy for verse lengths 1 

through 36 (98.72% vs. 98.68%). 

 

 

Figure 11. Accuracy as function of the poem length in verses 

8.2. Classifying automatically diacritized verses 

In order to improve the classification accuracy on verses without diacritics, we tried adding diacritics before classifying. 

We used the model described in Subsection 6.6 to automatically add diacritics before predicting the class using the deep 

model. Unfortunately, when diacritizing all test verses (after removing the original diacritics, when present), the 

classification accuracy dropped from 97.27% to 95.63%. Moreover, when diacritizing only the test verses of zero diacritics, 

the accuracy was not better at 96.97%. Recalling that the error rate of automatic poetry diacritization is high, we conclude 

that adding diacritics inaccurately does not help in classifying Arabic poetry. 

8.3. Comparison with previous work 

To the best of our knowledge, the classification accuracies reported in this work are significantly higher than previous 

work. Table 12 compares the classification results of this work with previous related work. Our proposal achieves higher 

accuracy than other machine learning solutions with smaller model and classifies input verses to the entire 16 poetry meters 

and the prose class. 
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Table 12. Classification results of related work and our system  

System Model parameters Dataset size Classes Accuracy 

Expert system (Ismail et al., 2010) Not applicable 20 poems 8 poetry 100% 

Context free grammar (Alnagdawi et al., 2013) Not applicable 128 verses 16 poetry 75 % 

Rule-based algorithm (Abuata and Al-Omari, 2018) Not applicable 417 verses 16 poetry 82.2% 

7-BiLSTM (Yousef et al., 2019) 401 k 1,722,321 verses 16 poetry 94.11% 

5-BiGRU (Al-shaibani et al., 2020) 5,600 k 55,440 verses 14 poetry 94.32% 

This work (4-BiLSTM) 350 k 1,657,003 verses 16 poetry + prose 97.27% 

100% for long poems 

 

Notice that the systems listed in this table use six different datasets of various sizes because no suitable benchmark 

dataset was available. Therefore, flawlessly fair comparison with previous work is not feasible. However, we hope that the 

discussion here sheds some light about the advantages of the proposed solution. Moreover, we are proposing the APCD2 as 

a benchmark dataset to facilitate future comparisons in this area. 

Our model uses bidirectional LSTM layers similar to the model proposed by Yousef et al. (2019). However, the proposed 

model achieves higher accuracy (97.27% vs. 94.11%). They experimented with three input data encoding techniques and 

considered specific network depths and widths. Instead, we present the raw input character codes to an embedding layer 

relying on the machine learning to find efficient data encoding. We also use carefully selected hyper-parameters, wider 

network (128 vs. 50 cells) and fewer LSTM layers (4 vs. 7 BiLSTM layers). 

Al-shaibani et al. (2020) used similar architecture with the GRU cell, which is a simplified version of the LSTM, and 

they used a much smaller dataset. However, we think that their model is too large and is an “over kill”. Our proposal uses a 

model 16 times smaller and is more accurate, even when trained without diacritics (97.00% vs. 94.32%). 

This work achieves even higher accuracies by addressing the inherent problem of allowed pattern variation in Arabic 

poetry. By considering multiple verses from a poem, the accuracy increases with more verses and approaches 100% for long 

poems. Also, and to the best of our knowledge, this is the first work that tackles the problem of automatically adding 

diacritics to Arabic poetry. 

9. Conclusions 

In this work, we use machine learning approach to classify and diacritize Arabic poetry. We have refined the Arabic 

Poetry Comprehensive Dataset (APCD) and extended it to include prose samples. APCD2 includes 1,657 k verses of the 16 

classical Arabic poetry meters and prose samples representing classical and modern Arabic. This dataset has a clear split to 

train and test subsets to facilitate comparing results of related research. 

To classify input verses into the 16 poetry meters and prose, we propose a deep and narrow recurrent neural network that 

has an embedding layer at the input, four hidden bidirectional LSTM layers, and softmax output layer. The suggested 

network is well tuned and achieves an average accuracy much higher than previous work (97.27%); it also detects the entire 

17 classes. 

Motivated by an insight about Arabic poetry, we propose a solution that improves the classification accuracy above 

97.27% and approaches 100%. Poets are allowed to have some verse variations in a poem of certain meter that may make 

such verses indistinguishable from another meter. When multiple verses are available from the same poem, predicting the 

class as the one of the highest aggregate probability overcomes these allowed variations and also some model errors. 

Although diacritics are required for the correct pronunciation of Arabic text, these diacritics are often absent relying on 

the context and the reader’s language proficiency to properly read and pronounce the text. The APCD2 dataset has a wide 

range of diacritics usage. The model achieves higher accuracy on diacritized verses compared with the accuracy on 

undiacritized verses. However, when the model is trained on the sample with diacritics removed, the model’s accuracy on 

undiacritized verses is higher. Therefore, we recommend using the model trained on undiacritized sample for classifying 

undiacritized verses. 

In order to improve readability and classification accuracy of undiacritized poetry verses, we investigated adding the 

verse missing diacritics using another recurrent neural network. It turned out that diacritizing poetry is harder than 

diacritizing prose. The diacritization error rate of poetry is about three times larger than that of the prose. This difficulty is 

expected as Arabic poets carefully and innovatively select their verses and have some freedom in diacritizing some word 

endings. Due to this high error rate, the accuracy of predicting the class of automatically diacritized verses is lower than that 

when leaving them undiacritized. 
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As a future work, we plan to continue providing solutions for Arabic poetry. We intend to extend the poetry classification 

to identify good verses and defective verses (verses with flawed deviation from the meter pattern). We also plan to develop 

a model that transcribes poetry verses into their respective scansions. Such solutions would help scholars and poets to 

analyze and improve poetry verses. We think that the automatic diacritization of poetry is important for people to properly 

read and enjoy poetry. We also think that the diacritization accuracy can be improved by exploiting some poem features 

such as meter, couplet symmetry, and the poem rhythm. 
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Appendix A. Source code 

Figure 12 shows the skeleton code of our baseline model coded in Python and Keras high-level API. This is a sequential 

model that starts with an embedding layer. This layer embeds each of the 45 input tokens (plus the null character) into a 32-

long vector. The longest expected sequence is 128 characters with null padding and this embedding layer masks out the null 

characters for the higher layers. The model has two BiLSTM layers; each layer has 2×128 cells and uses the dropout 

regularization technique to solve the overfitting problem. The output layer is a fully-connected layer that uses the softmax 

activation function with one output for each of the 17 classes. This model is compiled to use Adam optimizer in the 

backpropagation through time (BPTT) training and categorical cross entropy as loss function. The model trains using mini 

batches of size = 64 sequences using 15% of the training set for validation. The full source code of the final model is posted 

on GitHub (Abandah, 2020a). 

 
model = Sequential() 

model.add(Embedding(46, 32, input_length=128, mask_zero=True)) 

model.add(Bidirectional(LSTM(128, return_sequences=True, dropout=0.1, recurrent_dropout=0.3), 

                        merge_mode='concat')) 

model.add(Bidirectional(LSTM(128, dropout=0.1, recurrent_dropout=0.3), merge_mode='concat')) 

model.add(Dense(17, activation='softmax')) 

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) 

model.fit(train_verses, train_meters, batch_size=64, epochs=100, validation_split=0.15) 

Figure 12. Base model coded in Python Keras 
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